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Abstract

Traditional approaches for group decision-making–in particular, voting–typically as-
sume that agents explicitly submit well-defined ordinal preferences (e.g., rankings)
over the alternatives. However, in real-world settings such as online discussion fo-
rums, preferences are often expressed implicitly in natural language. We propose a
framework for making group decisions from natural language-based preferences. Our
approach combines ideas from random utility theory and social choice by first learn-
ing a general random utility model for each agent, and subsequently using a voting
rule to aggregate individual preferences to make a group decision. To circumvent the
computational intractability associated with the latter step, we show that fractional
voting outcomes, which are often easy to compute, are identical to those under the
randomized modeling with high probability. Preliminary experiments on the efficacy
of the framework were conducted on a newly-collected dataset.

1 Introduction

Suppose a family is deciding which college their child should attend after receiving ten offers.
The family members may have different preferences over the colleges: for example, the child
likes college A’s atmosphere; the dad prefers college B because of its low cost; and the mom
prefers college C because it is close to home. How should the decision be made?

This example illustrates the problem of group decision making, which is a central topic
in the field of social choice. One of the most popular approaches is voting—agents are asked
to submit their preferences over the alternative to the center, who then applies a voting rule
to make a group decision for the agents.

The classical paradigm of voting works well in group decision making scenarios with few
alternatives and low frequency, in particular presidential elections. However, it faces two
major challenges in modern, large-scale, and more-frequent group decision making scenarios:
the preference bottleneck [8] and the computational bottleneck [9].

The preference bottleneck arises when the agents’ preferences are too complicated to be
efficiently communicated. This often happens when the number of alternatives is large but
can be also a common phenomenon when the preferences are uncertain or even unknown
to the agents themselves. A typical approach to addressing preference bottleneck is by
conducting preference elicitation [7, 11, 41, 24], where interactive questions are computed
to efficiently elicit agents’ preferential information that are sufficient for making a group
decision.

The computational bottleneck arises when it is computationally hard to compute the
outcomes of voting rules based on the preferential information provided by the agents.
This typically happens when the number of alternatives is larger than a few under certain
voting rules such as Kemeny [12], or can happen under many voting rule when agents’
preferences are compactly represented [20]. Various algorithms and computational theories
were developed to address the computational bottleneck, as summarized in the Handbook
of Computational Social Choice [9].
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In this paper, we aim at providing an immersive solution to the preference bottleneck and
the computational bottleneck by leveraging the power of AI. Take the college-choice example
for instance, we want to build an intelligent system that silently learns the family members’
preferences from their conversations in natural language (without explicitly querying them),
and then compute a group decision based on the learned preferences. The key questions we
want to answer in this paper is:

How can we learn agent preferences from natural language to make a group decision?

While the idea of aggregating sentiments expressed in natural language is not new [14,
15], successfully addressing the problem appears to be technically challenging to tackle,
despite many previous work on sentiment analysis and stance detection [21, 26] and many
voice-enabled systems, including the business group decision-making system developed by
IBM [10]. In particular, we are not aware of a dataset on agents’ collective preferences (not
simply their sentiment), and we are not aware of a previous technical work that explicitly
combines preference learning from natural language and group decision making.
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Figure 1: The proposed framework.

Our Contributions
Our primary conceptual contribution is a group decision-making framework illus-

trated in Figure 1. We focus on natural language-based preferences in this paper and leave
its extensions to multi-modal inputs as future work. The framework consists of three stages.
In the opinion mining stage, features that indicate preferences, such as sentiment scores,
are extracted from natural language. In the preference learning stage, we use the features
extracted in the first stage to train a machine learning model to predict agents’ prefer-
ences. Finally, in the preference aggregation, voting rules are applied to agents’ predicted
preferences to make a group decision.

Our theoretical contributions lie in the preference aggregation stage (Section 5). We
first look at the problem in a fractional preference setting and show that we can aggre-
gate fractional preferences in polynomial time for a large number of voting rules, including
positional scoring rules, weighted majority graph-based rules and multi-round voting rules
to compute a single winner. Then, we consider a randomized setting, showing that the
fractional profile winner also has a high conditional probability of being the winner in the
randomized setting.

For experimental analysis, we created a new natural language dataset of discussions
about preferences over colleges from the College Confidential 1 forum. The discussions
involve two or three alternatives (colleges) per thread. We use Amazon Mechanical Turk
to crowd-label agents’ preferences in the discussions. The dataset currently has 53 different
discussions of varying lengths. We apply our framework on the dataset to predict group
decisions to get high training accuracy but moderate testing accuracy (53 ∼ 61% test

1https://talk.collegeconfidential.com/
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accuracy for group-decision prediction for three-alternative cases for multiple voting rules).
This indicates that the problem of predicting group decisions from natural language can be
challenging given low amount of data and using direct NLP features like sentiment values.

To evaluate our aggregation results more than just three alternatives, we experiment
with the preference data from the Moral Machine (MM) experiment [3], which consists of
agents’ preferences over moral dilemmas. Our results indicate that with high probability the
fractional profile winner will also be the randomized profile winner, showing effectiveness of
the aggregation method.

2 Related Work and Discussions

Sentiment analysis [21, 4, 2] is one of the most popular NLP tools used, and it is very relevant
to the problem of learning preferences. Since we are interested about preferences between
alternatives, target-specific sentiment analysis is of more concern[5, 37]. At the moment,
there are online tools that complete the task of entity-specific sentiment analysis as well.
However, sentiment alone can not help model preferences. Another interesting task is stance
detection [26, 34, 27, 34], which identifies whether an agent is in favor of, or against a target.
Work has also been done in collaborative filtering literature, where additional text features
like sentiment have been considered [13, 29, 19]. While the goal is different, this aspect of
the work has similar motivation as this work. Sentiment and opinion features are typically
considered for single pieces of text. While simple voting based ideas have been proposed
to get from sentiment analysis to preference aggregation [14, 15], our work considers more
general preference models and expands on that concept.

There are several NLP datasets built for closely related tasks, such as, [25, 40] for
predicting approval rating from text; [27, 34] for stance detection. [1] has a large amount of
debate data but more are about abstract topics rather than specific alternatives. The UGI
corpus [6] focuses on group decision-making, but the discussions express explicit rankings
instead of discussing the alternatives.

Random utility models (RUM) [36] are a family of models for modeling probabilistic
preferences. We show results using two special cases of general RUMs, the Plackett-Luce
model (PL) [30, 22] with features, and Thurstone’s Case V model (TV) [35] with features.
PL models are in particular popular for easy-to-compute probabilities for rankings and
comparisons. General RUMs subsume the model with bilinear features used in [42] and is
similar to use in modeling dyad ranking [17, 32, 33]. See [39] for an exposition to different
random utility models and algorithms for learning them.

Aggregation over distribution over preferences, which we also consider, was studied in
different extents in [31, 28, 23]. Hazon et al. [16] discusses a dynamic programming algo-
rithm to aggregate arbitrary distribution over preferences, which can be combined with our
model but ends up being computationally expensive. Zhao et al. [42] introduce randomized
voting rules which require similar computation as this paper. However, instead of assign-
ing winning probabilities proportional to score, we predict a single winner under different
voting rules and provide theoretical results about this result. We cover a larger umbrella of
voting rules in this paper compared to most other papers and present general results for all
anonymous voting rules.

3 Preliminaries

Fractional Preference Profiles. Assume we have n agents and set of alternatives A =
{a1, . . . , am}. Let L(A) be the set of all rankings over A. For a particular ranking σ, if
alternative aj is ranked i-th in σ, σ(j) = i; e.g. for the highest ranked alternative aj in σ,

3



σ(j) = 1. Instead of a single preferred ranking, we may say each agent has some partial
preference for each ranking. So, we define a fractional preference profile π ∈ [0, 1]m! such
that π(σ) is the fractional preference for a particular ranking σ ∈ L(A). If we have fractional
preference profiles π1, . . . , πn for each agent, we may interpret πi(σ) in two different ways. In
a probabilistic setting, we may assume that πi(σ) is the probability that agent i’s preferred
ranking is σ. Or that agent i gives fractional vote of weight πi(σ) to the ranking σ.
Random Utility Models (RUM). A RUM assumes an associated utility distribution for
each alternative. Given utilities u1, . . . , um for the alternatives in A, the probability of a
particular ranking Pr[aj1 � . . . � ajm ] = Pr[uj1 > . . . > ujm ].

The Plackett-Luce (PL) model [30, 22] and Thurstone’s Case V (TV) model are two of
the most popular random utility models, where PL uses Gumbel as the distributions of all
utilities [22] while TV uses Gaussian distributions. PL and TV are formally defined below.

Definition 3.1 (Plackett-Luce model (PL)). The parameter space is Θ = {~θ = {θj |1 ≤
j ≤ m}}. The sample space is L(A)n. Given a parameter ~θ ∈ Θ, the probability of any full

ranking σ = aj1 � aj2 � . . . � ajm is PrPL(σ|~θ) =
∏m−1
p=1

exp(θjp )∑m
q=p exp(θjq )

.

Definition 3.2 (Thurstone’s Case V Model (TV)). The parameter space isM = {~µ =
{µj |1 ≤ j ≤ m}}. The sample space is L(A)n. Given a parameter ~µ ∈ M, the utility for
any alternative aj , uj ∼ N (µj , 1

2 ), and the probability of any full ranking σ = aj1 � aj2 �
. . . � ajm is PrTV(σ|~µ) = Pr[ui1 > . . . > uim ].

Probabilities for PL model are more tractable for computation. Next, we define k-
mixture of PL models (k-PL in short), a generalization of PL.

Definition 3.3 (k-mixture of PL models (k-PL)). Given k ∈ N, the k-mixture Plackett-
Luce model is defined as follows. The sample space is L(A)n. The parameter space has
two parts. The first part is the mixing coefficients ~α = (α1, · · · , αk), where for all 1 ≤
κ ≤ k, ακ ≥ 0 and

∑k
κ=1 ακ = 1 The second part is

(
~θ(1), · · · , ~θ(k)

)
, where ~θ(κ) ∈ Θ is

the parameter of the κ-th Plackett-Luce component. The probability of any ranking σ is
Prk−PL(σ|~θ) =

∑k
κ=1 ακ PrPL(σ|~θ(κ)).

In short, the probability of k-PL is a convex combination of k PL models. For agent ai,
we use ~θi,(κ) (or ακ,i) to denote the κ-th PL component (or the κ-th mixing coefficient).

For general RUMs, let Xij ∈ Rd denote the feature vector of alternative aj for the
i-th agent. Then the perceived utilities for agent i are given by the following process–
uij ∼ Pr( · |Xij , B). Here B is the parameter of the general RUM.

We define k-mixture of Plackett-Luce model (k-PL-X) with features as follows.

Definition 3.4 (k-mixture of Plackett-Luce model with features (k-PL-X)). Given
any agent i, each alternative aj is characterized by a d-dimensional feature vector Xij . The
parameter space has two parts. The first part is the mixing coefficients ~α = (α1, · · · , αk),

where for all 1 ≤ κ ≤ k, ακ ≥ 0 and
∑k
κ=1 ακ = 1 The second part is

(
~β(1), · · · , ~β(k)

)
,

where ~β(κ) ∈ Θ is the parameter of the κ-th Plackett-Luce component. The sample space is

L(A)n. Given a parameter ~β ∈ Θ, the probability of any ranking σi = aj1 � aj2 � . . . � ajm
given by agent i is

Prk−PL-X(σi|~α, ~β) =
∑k
κ=1 ακ ·

∏m−1
p=1

exp(~β(κ)·Xijp )∑m
q=p exp(~β(κ)·Xijq )

k-PL-X can be treated as a convex combination of k PL models with features. Similarly
k-TV mixture models and models with features can also be defined for Thurstone’s Case V
models. These definitions and more properties of RUMs are discussed in Appendix A.
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The distribution over rankings given by PL and k-PL model enables us to compute
various fractional preferences efficiently. Here, we present the distribution of k-PL model and
the distribution for PL can be treated as a special case of k = 1. For a given k-PL parameters
~α = (α1, · · · , αk), ~θ =

(
~θ(1), · · · , ~θ(k))

)
and any ranking σ, we have π(σ) = Prk−PL(σ|~α, ~θ).

The probability of many partial rankings (i.e., a1 � others) can also be computed efficiently.
For example, let π(j) denote the probability of aj being ranked highest. We have π(j) =∑
σ(j)=1 π(σ) =

∑k
κ=1 ακ ·

exp(θj
(κ)

)∑m
`=1 exp(θ`

(κ)
)
. Similarly, let π(aj�a`) denote the probability of

aj � a`. Then we have π(aj�a`) =
∑
σ(j)<σ(`) π(σ) =

∑k
κ=1 ακ ·

exp(θj
(κ)

)

exp(θj
(κ)

)+exp(θ`
(κ)

)
.

Similarly, for given k-TV parameters ~α = (α1, · · · , αk), ~µ =
(
~µ(1), · · · , ~µ(k))

)
, we will

have π(aj�a`) =
∑k
κ=1 ακ · Φ

(
µj(κ) − µ`(κ)

)
, where Φ is the standard normal CDF. Even

though the probability for full rankings are computationally expensive to compute for TV
model, probabilities of pairwise preferences can still be calculated efficiently.
Voting Rules. A voting rule r : L(A)n 7→ A is a function that maps a preference profile
(n ranking over alternatives in A) to a single winner. For anonymous voting rules, where
the agent identity does not matter, the definition of voting rule may easily be extended to
provide a winner from a fractional preference as r : Rm! 7→ A. For example, a positional
scoring rule is characterized by a score vector ~s = {s1, . . . , sm} such that s1 ≥ . . . ≥ sm and
s1 > sm. And for each ranking σ, the alternative aj gets a score of sσ(j). For fractional
preference profile π, an alternative aj would get additive score π(σ) × sσ(j) for each σ ∈
L(A) and the alternative with maximum total score shall be the winner. Some popular
scoring rules are: Plurality, whose scoring vector is {1, 0, . . . , 0}; Borda, whose scoring
vector is {m − 1, . . . , 1, 0}; approval voting with top-` approval, whose scoring vector is
{1, . . . , 1

(` 1’s)

, 0, . . . , 0}.

Definition 3.5 (Weighted Majority Graph (WMG)). Given any fractional profile π,
WMG is a directed graph where the nodes are all the alternatives, there exists edges in both
directions for each pair of alternatives and weight for edge (aj , a`) is π(aj�a`).

π(aj�a`) is defined as before as the fractional preference for all rankings with aj � a`.
Voting rules that depend on pairwise preferences only, such as Copeland and maximin, can
be considered WMG based voting rules, because once the WMG is constructed, it is easy to
compute the winner, generally in polynomial time for m.

When r is Copeland, the winner is the alternative beating most other alternatives in
pairwise elections. Formally, define pairwise indicator

wr(aj , a`, F ) =

{
1 ,

∑n
i=1 π

(aj�a`)
i >

∑n
i=1 π

(a`�aj)
i

0 otherwise

Then, the Copeland winner maximizes Copeland score scorer(aj , F ) =
∑
` 6=j wr(aj , a`, F ).

The maximin winner maximizes the maximin score scorer(aj , F ) = min` 6=j
∑n
i=1 π

(aj�a`)
i −

π
(a`�aj)
i . It is a well-known fact that Borda winner can also be computed using WMG.

Multi-round Voting Rules. There are several multi-round voting rules, mostly all
of which focus on eliminating alternatives repeatedly on some criteria until an alternative
has definite majority. For example, Single Transferable Voting (STV) has m− 1 rounds. In
each round, the alternative with least plurality score is eliminated. And in the next round,
all rankings where the eliminated alternative was preferred would be counted for the next
ranked alternative.

5



Comment Text Sentiment Preference
Score

H Y

1. We thought that Harvard (H) was a much more
prestigious school than Yale (Y). +0.7 +0.1 H � Y

2. My daughter chose to go to Harvard (H) over Yale (Y)
but she was happy with both offers. 0.0 0.0 H � Y

Table 1: Examples of opinion features in text

4 The Framework

In this section we formally propose the framework that learns and aggregates agents’ prefer-
ences based on natural language interactions, which consists of three parts: Opinion mining
(Section 4.1), preference learning (Section 4.2), and preference aggregation (Section 5).

We view the framework mostly as a conceptual contribution, and while we implement
an instance of this framework, it was not our goal to find a state-of-the-art solution to the
problem, and our solution can definitely be improved upon. The main technical contribu-
tions are the theoretical guarantees in the third components, which will be presented in the
next section.

4.1 Opinion mining

A discussion is an array of individual comments, where each comment is associated with
an agent i. Each agent can have one or more comments associated with them. We assume
that we know beforehand the set of alternatives, A, that are being discussed. With the
comments and the set of alternatives as input, output of the opinion mining section will be
individual NLP based features for each alternative for each comment.

For example, a common NLP feature associated with preferences is sentiment. A positive
sentiment expressed towards an alternative can mean preference for that alternative. So,
in our implementation, using state-of-the-art tools for target-specific sentiment extractions
(such as Google’s Natural Language API 2 and Watson Natural Language Understanding
API 3), we extract sentiment values for specific alternatives. See Table 1 for some examples
of this. For each comment by agent i, the sentiment scores and magnitude expressed toward
alternative j are part of the opinion features.

In addition to extracted sentiment values, direct language features like n-grams and
word-embeddings can also be considered as features for the learning problem.

4.2 Preference Learning

For each comment, we have NLP features representing the comment, and labels regarding
to the preferences expressed. The goal of the preference learning problem would be to learn
a model that can predict preferences over the alternatives. So, given a learned model, we
can get a distribution over preferences over alternatives.

For each agent i and alternative aj , we can have a feature vector Xij consisting of
NLP features, agent features and alternative features. We consider all features we can
extract from the Opinion Mining stage. Additionally, we may use features of the agents and
alternatives themselves in the form– ~ui ⊗ ~vj , where ⊗ denotes the Kronecker product, ~ui is
the feature vector of agent ui, and ~vj is the feature vector of aj .

2https://cloud.google.com/natural-language/
3https://www.ibm.com/cloud/watson-natural-language-understanding
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In our implementation, we learn two types of models based on this data. First, con-
sidering pairwise preferences between alternatives, we can get a pair of alternative fea-
tures and a preference label. For a pair of alternatives, A,B, possible labels can be
A � B,B � A,A = B,No preference. So, we get a multiclass classification problem. We
considered traditional classification algorithms like random forests, SVM, logistic regression,
shallow neural nets for our implementation.

Secondly, we can also learn random utility models with features. As we shall see
in Section 5, this allows us to aggregate distributions over preferences in a meaningful
way. For example, Plackett-Luce model with features (PL-X) are used to model the pref-
erence profile in our datasets. See [39] for various methods to learn general RUMs.
We use maximum likelihood estimation (MLE) to learn the Plackett-Luce parameters β:
~β∗ = argmax~β

∑
i ln PrPL-X(σi| ~β)

4.3 Preference aggregation

Based on the learned model, given a new set of alternatives with feature vectors {Xij}, we
can get specific predictions for preferences or distributions over preferences. To get a group
decision, we need to aggregate these predictions/distributions, and we can apply various
voting rules there.

In case we have specific prediction for pairwise preferences, any weighted-majority-graph
based voting rule can be used to aggregate the preference predictions. For distributional
preferences it becomes computationally intractable, which leads to our proposed solutions
and theoretical results. In particular, we consider the case where distribution over pref-
erences are compactly represented using random utility models and we want to learn the
output of a specific voting rule. We present theoretical result for some voting rules under
this scenario in Section 5. In our implementation, given the learned PL-X parameters, β,
we get different PL parameters, ~θj for each agent over the alternatives in the test scenarios.
We then aggregate the distributions represented by these models to get a group decision.

We should mention that the preference aggregation part of the framework would also
work for non-NLP problems as well. For example, if agents made pairwise comparisons
for sample scenarios from a large set of alternatives, we can still learn a model to express
preferences and then apply the aggregation results. An example of this would be learning
preference models from pairwise data in the Moral Machine dataset, and in a new (test)
scenario, predicting the group decision based on the learned models.

5 Efficient preference aggregation of distributional pref-
erences

Based on the learned models, given a new discussion, we can predict distributions over
preferences for each agent, represented compactly using random utility models. In this
section, we consider the problem of aggregating these distribution over preferences to get a
group decision using voting rules.

5.1 Aggregating Fractional Preferences

Assume that we have n agents and agent i has k-PL (or k-TV) mixing coefficients ~α =

(α1, · · · , αk) and parameters
(
~θi(1), . . . , ~θi(k)

)
or
(
~µi(1), . . . , ~µi(k)

)
.

~α and ~θi(κ)’s can then be used to compute the fractional preference profile πi for agent i.
As mentioned in Section 3, getting full fractional profiles for TV model can be computation-

7



ally expensive, but we can make use of them, when we are considering pairwise preferences
only.

Let Π = {π1, . . . , πm} be the set of all fractional profiles. The total preference for a
particular ranking σ is just the sum of fractional preference for all agents. We define this
as the sum-fractional profile F (σ) =

∑n
i=1 πi(σ). So F (Π) = {F (σ)}σ∈L(A) ∈ Rm!} will

be a vector representing the total fractional preference among all agents for each ranking.
In general, when clear from context we will just use F to mean F (Π). All voting rules
introduced in this paper can be extended to fractional profiles. For a voting rule r, we say
r(F ) is the fractional profile winner (FP-winner) for Π. Numeric examples of voting rules
with fractional profiles are given in the Appendix.

The following proposition can be considered a simple extension of a result of [42].

Proposition 5.1. Given m alternatives and n agents, where agent i has k-PL mixing
coefficients α1, · · · , αk and parameters

(
~θi(1), . . . , ~θi(k)

)
, FP-winner r(F ) can be computed

in O(kmn) time when r is plurality.

Positional scoring rules other than plurality can be generally hard to compute. Fortu-
nately, there are scoring rules such as approval voting where only the top-` ranked alter-
natives get any score. For such cases, we have the following general theorem (for which
Proposition 5.1 is a special case with ` = 1).

Theorem 5.2. Given m alternatives and n agents, where agent i has k-PL mixing coeffi-
cients α1, · · · , αk and parameters

(
~θi(1), . . . , ~θi(k)

)
, for scoring rules that have score vectors

with ` < m non-zero scores, FP-winner can be computed in O(k`m`n) time.

Now, we turn to WMG-based voting rules. Once the WMG is constructed, both
Copeland and maximin winners can be computed in O(m2) time. The following lemma
asserts that the WMG can be computed in polynomial time from agents’ RUM parameters,
if the models are k-PL or k-TV.

Lemma 5.3. Given m alternatives and n agents, where agent i has k-PL (or k-TV) mixing

coefficients α1, · · · , αk and parameters
(
~θi(1), . . . , ~θi(k)

)
(Or

(
~µi(1), . . . , ~µi(k)

)
), the WMG of

F can be computed in O(km2n) time.

In light of Lemma 5.3, the FP-winner of the WMG-based rules discussed in this paper
can be computed in polynomial time.

Theorem 5.4. Given m alternatives and n agents, where agent i has k-PL (or k-TV)

mixing coefficients α1, · · · , αk and parameters
(
~θi(1), . . . , ~θi(k)

)
(Or

(
~µi(1), . . . , ~µi(k)

)
), FP-

winner for Borda, Copeland, and maximin can be computed in polynomial time.

In most multi-round voting rules, a simple voting rule like plurality is applied in repeat-
edly. The main challenge is recomputing the score in each round as score received by the
eliminated alternatives is then distributed among remaining ones. The next Theorem states
that for a wide range of multi-round rules this can be done efficiently.

Theorem 5.5. For a multi-round voting rule r, if FP-winner for voting rule applied in each
round can be computed in polynomial time, then the multi-round FP-winner r(F ) can also
be computed in polynomial time.

For example, Theorem 5.5 and Proposition 5.1 together implies that STV FP-winner
can be computed in polynomial time, and we get the following corollary.

Corollary 5.6. Given m alternatives and n agents, where agent i has k-PL mixing coeffi-
cients α1, · · · , αk and parameters

(
~θi(1), . . . , ~θi(k)

)
, FP-winner for STV can be computed in

O(km2n) time.
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5.2 Aggregating Randomized Preferences

So far, we have been treating πi(σ) as a fractional vote by agent i for ranking σ. But we
can also consider the problem in a randomized setting, in which we assume that vi(σ) is the
indicator random variable (RV) defining whether agent i’s preference is σ. We define the
total number of agents with preference σ as H(σ) and H(Π) = {H(σ)}σ∈L(A). H(Π) ∈ Rm!

is an m!-dimensional RV, denoting the total number votes in favor of each rankings.

Lemma 5.7. Given set of fractional preferences Π, for all σ ∈ L(A),E(H(σ)) = F (σ)

Algorithm 1: Monte Carlo voting

1 Input: Distribution of preferences

PLi(~θi), voting rule r;
2 Output: p̃j for each aj ;
3 Initialization: cj = 0 for each j ≤ m;
4 for t = 1, · · · , T do
5 Sample a linear order for each

agent j;
6 Compute the winner aj using

voting rule r;
7 cj ← cj + 1;

8 end
9 Compute p̃j = Pr[r(H) = aj ] =

cj
T ;

Just like F, F (Π), we use H instead
of H(Π) when it is clear from context.
Now, since H is an RV, so the winner un-
der the randomized setting would also be
a random variable. We call this r(H),
the randomized-profile winner (RP-winner).
and we would get a probability for each al-
ternative to be the winner. Let us define
the winning probability for alternative aj
as pj = Pr[r(H) = aj ].

Since we can compute πi(σ) for all σ and
all i ≤ n, it is possible use a dynamic pro-
gramming algorithm in [16] to exactly com-
pute pj ’s. However, this algorithm would
not be computationally tractable. So we
approximately compute probability pj for
j ≤ m with Algorithm 1. The sampling
complexity for this problem is expressed in Theorem 5.8.

Theorem 5.8. Given any ε, δ > 0, if p = 〈p1, . . . , pm〉 are true winning probabilities and p̃

is the estimate from Algorithm 1, we need O(m
2

ε2 ln( 2m
δ )) samples so that TVD(p, p̃) ≤ ε with

probability 1−δ where TVD(p, p̃) is the total variation distance between the two distributions.

How Often is Fractional-Profile Winner also the Randomized-Profile Win-
ner? For a group decision-making setting, computing the probability of winning for each
alternative is not always necessary. Finding the alternative with highest probability of
winning can be a much higher priority. Since we have an efficient aggregation method to
compute r(F ), we can focus on finding Pr[r(H) = r(F )] and in particular whether we can
guarantee that r(F ) is the alternative with highest probability of winning in H.

Before we delve further in this section, we define the concept of margin of victory
(MoV) [38]. In a regular scenario, MoV of an election, is the smallest number k such
that k agents can change the winner by voting differently. It can be considered a measure
for how robust the election result is. We change the definition slightly to consider fractional
profiles and FP-winners.

Definition 5.1 (Margin of Victory). Given a fractional preference profile Π and a voting
rule r, the MoV is defined as MoV(F (Π), r) = minΠ′

1
2 ||F (Π)− F (Π′)||1, where r(F (Π)) 6=

r(F (Π′)).

Now, we present the main theorem for this subsection.

Theorem 5.9. Given a set of m alternatives A, n agents with fractional preference profiles
π1, . . . , πn, let fractional profile be F and randomized profile be H. For any anonymous

voting rule r, for any d ≥ 0, Pr
[
r(H) = r(F ) | MoV(F, r) ≥ d

]
≥ 1− 2m! · exp

(
− d2

d+2n

)
.

9



This theorem does not depend on any voting rule based properties and thus will hold
for any anonymous voting rule r. While the bound itself may be weak for cases with
small N and relatively large m, this fact actually works to our advantage. Because the
true probability of r(F ) being the winner could be much higher. Also note that while the
theorem uses the value of MoV, we actually never need to compute it, because none of our
voting rule algorithms depend on it. Now, if the probability of an alternative winning under
randomized preferences is ≥ 0.5, that guarantees that it is the highest probable winner.
For the FP-winner, we get the following sufficient condition for this to happen. For low m
(compared to

√
n), such a margin of victory is often attainable for real preference profiles.

Theorem 5.10. Given a set of m alternatives A, n agents with fractional preference profiles
π1, . . . , πn, let fractional profile be F and randomized profile be H. For any anonymous
voting rule r, we can get Pr[r(H) = r(F )] ≥ 1

2 for a margin of victory MoV(F, r) that is
Ω(m log(m) +

√
n).

6 Experiments and Results

College Confidential Data.
Instances: The dataset consists of multiple “discussions”. Each discussion has fixed

alternatives (set of alternatives can be different for each discussion) and a number of users
(agents) discussing their preferences over the alternatives. The discussion consists of mul-
tiple serialized comments. For each comment made by the agents, for all possible pairs of
alternatives, we have human annotation of preference expressed over the alternatives.

Collection Process:

Figure 2: Sample Task faced by agents

We scraped all discussions in the College Confidential forum made between Jan 2017
through Jun 2020 that had two or more alternatives and had at least 40 comments. The
threshold of 40 comments were chosen so that there was at least some meaningful discussion
of ideas instead of few isolated comments.

For the annotation, we recruited participants on Amazon Mechanical Turk. Every par-
ticipant was given 20 comments to annotate, and each comment in turn was shown to up to
3 participants. For each comment, the participants choose whether the agent expressed a
preference or not, and in case they did what the exact preference was. A sample task faced
by participants is shown in Figure 2.

10



Statistics: In total, we have labeled data from 53 discussions, 40 two-alternative and
13 three-alternative discussions. Each discussion has at least 30 individual comments which
compare between the alternatives. Considering the three pairwise comparisons in a com-
parison of three alternative, the complete dataset consists of 2974 pairwise comparisons.

Analysis and Results:
To learn from the data, we extract entity-level sentiment features and additional text

features e.g. Parts of speech (PoS) tagging, n-grams etc. to create feature vector for the
scenarios. We found that the text features (PoS, n-grams), while useful to identify whether
there is a preference expressed in a comment, is much less helpful than the sentiment features
themselves. Thus, we consider two ways to train classifiers.

1. Two stage learning - first stage: preference vs no-preference, second stage three class
classifier with labels A > B,A < B,A = B

2. Single stage four class classifier with labels no preference, A > B,A < B,A = B
When learning the PL-X parameters, we also implement a two-stage method. The first

stage learns a preference vs no-preference classifier, while the PL-X model is trained only on
comments that have expressed preferences. To have a baseline for comparison, we consider
a predictor that predicts the class based on a single value: sentiment score, predicting
preference for the alternative that has higher sentiment associated with it.

Training
accuracy

Cross-
validation
accuracy

Baseline 0.56 0.56
Single stage RF 0.94 0.60
Single stage NN 0.76 0.59
Two-stage RF 0.93 0.56
Two-stage NN 0.75 0.58
RF + PL-X 0.69 0.56

Table 2: Comment level prediction accuracy
for pairwise preference

We show the results for random forest
(RF), shallow neural nets (NN) and PL-
X models in Table 2. While some classi-
fiers have high training accuracy, test accu-
racy is low and comparable to the simple
baseline for all models. This indicates that
predicting preference can be a challenging
task based on sentiment and other simple
text features. While we also tried multi-
nomial logistic regression, SVM and deci-
sion trees among other classifiers, they had
poorer training and test accuracy, hence we
do not present those results.

Aggregation results: We then predict aggregated group decisions based on the indi-
vidual comment level predictions. For regular classifiers, we use the two-stage variants and
we take the predictions as strict preference for one alternative or a tie and then aggregate
the predictions. For PL-X however, we may additionally use fractional profiles as indicated
in Section 5 to make the group decision.

Note that since the labels are for pairwise comparisons, it makes sense to apply WMG-
based voting rules. Hence, we test on Copeland, maximin and Borda rules. Here, also we
present both training and testing accuracy. Again, we see that the training accuracy can be
particularly high for RF and NN, we can get high training accuracy, the test set performance

Copeland Maximin Borda
Test Train Test Train Test Train

Baseline 6/13 29/53 6/13 32/53 6/13 31/53
RF 8/13 41/53 8/13 42/53 8/13 43/53
NN 8/13 37/53 7/13 36/53 7/13 47/53
PL-X (fractional) 8/13 33/53 8/13 32/53 7/13 31/53
PL-X (classifier) 7/13 34/53 8/13 32/53 7/13 33/53

Table 3: Group prediction accuracy for various voting rules when trained on two alternative
discussions and tested on three alternative discussions
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does not improve much from the baseline. For the testing scheme, we trained on all two-
alternative discussions and tested on three-alternative discussions. Since all voting rules
become trivial for two alternatives, we tested on three-alternative scenarios. These results
(Table 3) with somewhat high training accuracy but poor test accuracy again indicate the
challenge of successfully learning and aggregating group decision from natural language.
Moral Machine Data. The Moral Machine dataset [3] consists of pairwise comparisons
between alternatives posing a moral dilemma. Using the pairwise comparison data and
alternative features, we learn an individual PL-X models for each agent. Given a new set of
alternatives, using the PL-X parameters, we can learn a distribution over the alternatives πi
for each agent i. Using these distributions we can check our theoretical results for preference
aggregation (Section 5).

For a set of alternatives, A, we can compute sum-fractional preference profile F (Π). For
this experiment, we consider the scoring rules, plurality and Borda for voting. From F (Π),
we can compute r(F ) and MoV(F, r) when r is plurality and Borda. We modify Algorithm 1
for computing MoV for scoring rules presented in Xia [38] to work with fractional profiles.
Additionally, for A, using the Algorithm 1 defined in Section 5.2, we can estimate the
probability of the fractional-profile winner also being the randomized profile winner, i.e
Pr[r(H) = r(F )]. We repeat this process for different randomly sampled alternative sets of
size |A| = 4 and N = 1000 random agents.

Figure 3: Margin of Victory vs Probability that FP-winner is also RP-winner

Figure 3 is a scatter plot for estimates and lower bounds for Pr[r(H) = r(F )], plotted
against MoV. We notice that even for low margin of victory, when the theoretical guarantee
is not that strong, the probability that the fractional winner is the randomized-profile winner
as well is close to 1. This gives confidence in our aggregation framework. We also show
further experimental results in Appendix D.

7 Discussion and Future Work

We propose a framework that learns preference models for agents from natural language and
then efficiently aggregate preferences to provide a group decision. We also present an initial
implementation of the framework in a newly created a dataset for the specific problem of
group decision-making from natural language. From our experiments, we notice that even
sentiment extracted using state-of-the-art sentiment analysis methods are alone not enough
to express sentiments. For preferences, we noticed that sentiments about alternatives are
not always what matters. But rather figuring out the context of other entities about which
sentiments were expressed is an important problem of preference learning and may improve
the framework performance. Our dataset, in its current state, may not be large enough to
train deep learning based models and it is our goal to expand the dataset with more labeled
discussions. In that case, making use of modern deep learning methods in NLP to directly
solve the preference learning problem might become more tractable. Also, it would also
be interesting to expand on this framework towards building a multi-modal group decision-
making system by learning preferences from other possible inputs besides natural language.

12



Acknowledgments

We thank Tania Bedrax-Weiss, Craig Boutilier, participants of the COMSOC video seminar,
and anonymous reviewers for helpful discussions and comments. This work is supported by
NSF #1453542, ONR #N00014-17-1-2621, and a gift fund from Google.

References

[1] Rob Abbott, Brian Ecker, Pranav Anand, and Marilyn Walker. Internet argument
corpus 2.0: An SQL schema for dialogic social media and the corpora to go with
it. In Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC’16), 2016.

[2] Apoorv Agarwal, Boyi Xie, Ilia Vovsha, Owen Rambow, and Rebecca J Passonneau.
Sentiment analysis of twitter data. In Proceedings of the workshop on language in social
media (LSM 2011), pages 30–38, 2011.

[3] Edmond Awad, Sohan Dsouza, Richard Kim, Jonathan Schulz, Joseph Henrich, Azim
Shariff, Jean-François Bonnefon, and Iyad Rahwan. The moral machine experiment.
Nature, 563, 2018.

[4] Rushlene Kaur Bakshi, Navneet Kaur, Ravneet Kaur, and Gurpreet Kaur. Opinion
mining and sentiment analysis. In 2016 3rd International Conference on Computing
for Sustainable Global Development (INDIACom), pages 452–455. IEEE, 2016.

[5] Siddharth Batra and Deepak Rao. Entity based sentiment analysis on twitter. Science,
9(4):1–12, 2010.

[6] Indrani Bhattacharya, Michael Foley, Christine Ku, Ni Zhang, Tongtao Zhang,
Cameron Mine, Manling Li, Heng Ji, Christoph Riedl, Brooke Foucault Welles, and
et al. The unobtrusive group interaction (UGI) corpus. In Proceedings of the 10th
ACM Multimedia Systems Conference, 2019.

[7] Craig Boutilier. A POMDP formulation of preference elicitation problems. In Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI), pages 239–246,
Edmonton, AB, Canada, 2002.

[8] Craig Boutilier. Computational Decision Support: Regret-based Models for Optimiza-
tion and Preference Elicitation. In P. H. Crowley and T. R. Zentall, editors, Com-
parative Decision Making: Analysis and Support Across Disciplines and Applications.
Oxford University Press, 2013.

[9] Felix Brandt, Vincent Conitzer, Ulle Endriss, Jerome Lang, and Ariel D. Procaccia,
editors. Handbook of Computational Social Choice. Cambridge University Press, 2016.

[10] Tathagata Chakraborti, Kshitij P Fadnis, Kartik Talamadupula, Mishal Dholakia, Bi-
plav Srivastava, Jeffrey O Kephart, and Rachel KE Bellamy. Planning and visualization
for a smart meeting room assistant. AI Communications, 32(1):91–99, 2019.

[11] Vincent Conitzer and Tuomas Sandholm. Vote elicitation: Complexity and strategy-
proofness. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
pages 392–397, Edmonton, AB, Canada, 2002.

[12] Cynthia Dwork, Ravi Kumar, Moni Naor, and D. Sivakumar. Rank aggregation meth-
ods for the web. In Proceedings of the 10th World Wide Web Conference, pages 613–622,
2001.

13
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A Discussion of Random Utility Models

In this , we use a more general Plackett-Luce model with features for preference learning.
Let Xij ∈ Rd denote the feature vector of aj given agent i. We define the Plackett-Luce
model with features as follows.

Definition A.1 (Plackett-Luce model with features (PL-X)). Given any agent i,
each alternative aj is characterized by a d-dimensional feature vector Xij . The parameter

space is Θ = {~β = {βk|1 ≤ k ≤ d}}. The sample space is L(A)n. Given a parameter ~β ∈ Θ,
the probability of any ranking σi = aj1 � aj2 � . . . � ajm given by agent i is

PrPL-X(σi|~β) =

m−1∏
p=1

exp(~β ·Xijp)∑m
q=p exp(~β ·Xijq )

.

Internal Consistency of RUMs: Because of the internal consistency that fractional
preferences have when defined using PL parameters, the updated score each round may also
be computed efficiently.

Proposition A.1 (Internal consistency). Given PL parameters θ1, . . . , θm, consider any
partial ranking σB = {aj1 � . . . � ajb} over alternatives in B = {aj1 , . . . , ajb where B ⊂ A.
The fractional preference for all rankings σ ∈ L(A) which agree with σB regarding the order

of alternatives in B is
∑

σ∈L(A)
σ,σB are consistent

π(σ) = π(σB) =
∏b−1
p=1

exp(θjp )∑jb
q=jp

exp(θj)
.

This result, proven in [18], implies that computing the updated results in each round
is equivalent to ignoring the already eliminated alternatives and just considering the PL
parameters for existing alternatives. This is useful both for computing pairwise preferences
and also preferences in multi-round voting rules.

B Numerical Example for Fractional Profiles

Example 1: For A = {a1, a2, a3}, suppose we have fractional profiles as in Table 4 for 3
agents.

σ π1(σ) π2(σ) π3(σ)
a1 � a2 � a3 1/2 0 1/3
a1 � a3 � a2 1/2 0 1/3
a2 � a1 � a3 0 1 0
a2 � a3 � a1 0 0 0
a3 � a1 � a2 0 0 1/6
a3 � a2 � a1 0 0 1/6

Table 4: Example of fractional profiles for m = 3, n = 3

Based on these fractional preferences we can calculate alternative scores for different
voting rules. For example, we show plurality, Borda and maximin scores in Table 5

alternative Plurality Borda Maximin
score score score

a1 5/3 9/2 11/6
a2 1 3 7/6
a3 1/3 3/2 1/3

Table 5: Example of fractional profiles with m = 3, n = 3
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We see that, under all three voting rules, a1 has the maximum score and is FP-winner
for these fractional profiles.

C Various Proofs

Proof for Proposition 5.1

Proposition. Given m alternatives and n agents, where agent i has k-PL mixing coef-
ficients α1, · · · , αk and parameters

(
~θi(1), . . . , ~θi(k)

)
, FP-winner r(F ) can be computed in

O(kmn) time when r is plurality.

Proof. The score vector when r = plurality is ~s = {1, 0, . . . , 0}. So, to compute plurality

winner, we only need π
(j)
i for all i ≤ n and j ≤ m. And by definition, plurality winner is

r(F ) = argmax
aj

n∑
i=1

π
(j)
i = argmax

aj

n∑
i=1

exp(θji )∑m
k=1 exp(θki )

Clearly, the sum for each j can be computed in O(n) and thus the argmax can be computed
in O(mn) time.

Proof for theorem 5.2

Theorem. Given m alternatives and n agents, where agent i has k-PL mixing coefficients
α1, · · · , αk and parameters

(
~θi(1), . . . , ~θi(k)

)
, for scoring rules that have score vectors with

` < m non-zero scores, FP-winner can be computed in O(k`m`n) time.

Proof. Only the first ` ranks contribute to alternative scores. Thus, if we enumerate all
possible permutations over the top ` positions and compute the fractional preference for
each permutation, we can compute score for each alternative. There are m!

(m−`)! such per-
mutations.

Now, Assume σ|` = aj1 � . . . � aj` is one such permutation. for k-PL parameters as
described,

πi(σ|`) =

k∑
κ=1

ακ ·
∏̀
p=1

exp(θ
jp
i(κ))∑m

q=p exp(θ
jq
i(κ))

.

So computing each πi(σ|`) would take O(kl) time, there are O(ml) such permutations, and

n users, we can compute score for all alternatives in O(klmln) time.

Proof for Lemma 5.3

Lemma. Given m alternatives and n agents, where agent i has k-PL (or k-TV) mixing

coefficients α1, · · · , αk and parameters
(
~θi(1), . . . , ~θi(k)

)
(Or

(
~µi(1), . . . , ~µi(k)

)
), the WMG of

F can be computed in O(km2n) time.

Proof. The WMG for F , same as that for a single fractional profile πi would have m nodes

and thus O(m2) edges. Weight for edge (aj , a`) for k-PL model would be
∑n
i=1 π

(aj�a`)
i =∑n

i=1

∑k
κ=1 ακ

exp(θj
i(κ)

)

exp(θj
i(κ)

)+exp(θ`
i(κ)

)
.

For k-TV model, this becomes π(aj�a`) =
∑k
κ=1 ακ · Φ

(
µj(κ) − µ

`
(κ)

)
For each case, each edge weight is obviously computable in O(kn) time, which leads to

the desired result.
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Lemma C.1. Given m alternatives and n agents, where agent i has k-PL mixing coefficients
α1, · · · , αk and parameters

(
~θi(1), . . . , ~θi(k)

)
, consider a multi-round voting rule given where

voting rule rq is used in round q. Let run-time of rq for m voters be T (rq,m), then total
run-time for the multi-round procedure shall be O(

∑m
q=1 T (rq,m− q + 1)).

Proof. For each round until the last one, the eliminated alternative needs to be computed
instead of the winner. For all rules we have discussed, finding lowest score alternative
requires the same time as finding winning alternative. Now, Lemma A.1 tells us that for a
single PL, computing the fractional preference for a partial ranking is as simple as ignoring
the other alternatives. Now, the probability of k-PL is a convex combination of k PL models.
In round q, if the set of remaining alternatives is B ⊂ A with |B| = m − q + 1, for some
σB ∈ L(B)

πi(σB) =

k∑
κ=1

ακ

b−1∏
p=1

exp(θjp)∑jb
q=jp

exp(θj)

Thus, computing πi for i ≤ n and consequentially fractional preference for any other partial
ranking in round q concerns computing over only the remaining m− q+ 1 alternatives. So,
we can say that the run-time for round q is T (rq,m− q+ 1), thus completing the proof.

Proof for Lemma 5.7

Lemma. Given set of fractional preferences Π, for all σ ∈ L(A),E(H(σ)) = F (σ)

Proof. The probability that agent i’s preferred ranking is σ is πi(σ) and the related in-
dicator RV is vi(σ). So, E(vi(σ)) = πi(σ). Now, H(σ) =

∑n
i=1 vi(σ). So, E(H(σ)) =∑n

i=1 E(vi(σ)) =
∑n
i=1 πi(σ) = F (σ).

Proof for theorem 5.8

Theorem. Given any ε, δ > 0, if p = 〈p1, . . . , pm〉 are true winning probabilities and p̃ is

the estimate from Algorithm 1, we need O(m
2

ε2 ln( 2m
δ )) samples so that TVD(p, p̃) ≤ ε with

probability 1−δ where TVD(p, p̃) is the total variation distance between the two distributions.

Proof. For alternative aj , define indicator random variable Xj , which takes the value 1 when
ai wins, and 0 otherwise. Then Xj is Bernoulli distributed with probability π(ai), and each
trial is independent. Let ε > 0 be arbitrary. Define εi = ε

m .
Then we use Chernoff bound and have

Pr[|
∑T
t=1X

(t)
i

T − π(ai)| ≥ εi] ≤ 2e
− Tε2i

3π∗(ai)

The total variation distance between the winner distributions computed using the Monte
Carlo algorithm p̃ and the underlying ground truth p can be defined as

∑
aj∈A |pj − p̃j |. Ap-

plying the union bound, with probability at least 1− 2
∑m
i=1 e

− Tε2

3m2π∗(ai) , the total variation
distance is below

∑m
i=1 εi = ε.

So, to have prob. > δ, we would need at least T = 3m2

ε2 ln 2m
δ samples to have

TVD(p, p̃) ≤ ε

Proof for theorem 5.9

Theorem. Given a set of m alternatives A, n agents with fractional preference profiles
π1, . . . , πn, let fractional profile be F and randomized profile be H. For any anonymous

voting rule r, for any d ≥ 0, Pr
[
r(H) = r(F ) |MoV (F, r) ≥ d

]
≥ 1− 2m! · exp

(
− d2

d+2N

)
.
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Proof. Assuming that F (σ) > 0 for all σ ∈ L(A), we get the following Chernoff bounds for
δ > 0

Pr[|H(σ)− F (σ)| ≥ δF (σ)] ≤ 2 exp
(
− δ2

δ+2F (σ)
)

⇐⇒ Pr[|H(σ)− F (σ)| ≥ d] ≤ 2 exp
(
− d2

d+2F (σ)

)
≤ 2 exp

(
− d2

d+2N

)
with d = δF (σ). The last inequality comes from the fact that F (σ) ≤ N .

Using the union bound with this for all σ, we get

Pr
[ ⋂
σ∈L(A)

(|H(σ)− F (σ)| ≤ d)
]
≥ 1− 2m! exp

(
− d2

d+2N

)
This basically means that with high probability, total vote for all rankings in H will be
within d of what it is in F . Suppose, now for some voting rule r, we compute the winner
and MoV based on F to get r(F ) and MoV(F, r). Now, if MoV(F, r) ≥ d, and H(σ) is
within d to F (σ) for all σ ∈ L(A) that would be sufficient for r(F ) = r(H), independent of
the voting rule and that concludes the proof.

Proof for Theorem 5.10

Theorem. Given a set of m alternatives A, n agents with fractional preference profiles
π1, . . . , πn, let fractional profile be F and randomized profile be H. For any anonymous
voting rule r, we can get Pr[r(H) = r(F )] ≥ 1

2 for a margin of victory MoV(F, r) that is
Ω(m log(m) +

√
n).

Proof. Instead of applying the union bound where we did in the proof of Theorem 5.9, we
could use it before to get the following-

Pr
[ ⋂
σ∈L(A)

(|H(σ)− F (σ)| ≤ d)
]
≥ 1−

∑
σ∈L(A)

exp
(
− d2

d+2F (σ)

)
We know the added fact that

∑
σ∈L(A) F (σ) = N . Because the fractional votes must add

up to 1 for each agent. Thus, to get a tighter lower bound, we can solve the following
optimization problem

maximize

m!∑
p=1

exp
(
− d2

d+2xp

)
where

∑m!
p=1 xp = n

Because of symmetry, the KKT points for this m!-dimensional optimization problem
would be all points where some xp are 0 and the rest are all equal. Thus, we can represent
the optimum value as

max
{

(m!− k) exp(−d) + k exp(− d2

d+ n
k

)
}m!

p=1

Note that this already leads to a tighter bound than Theorem 5.9, however we proceeded
to present the simpler result because there is no unique k that gives a general inequality for
all values of d. Thus we chose to present the simpler but weaker result there.

Although we get no fixed k for all values of d, as d grows higher, the value for k = 1
dominates the other values. Particularly, for d >

√
(n),

max
{

(m!− k) exp(−d) + k exp(− d2

d+ n
k

)
}m!

p=1
= (m!− 1) exp(−d) + exp(− d2

d+ n
)
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Now, we can find d = Ω(mlogm) s.t. (m! − 1) exp(−d) goes to zero. Also, as d grows

slightly from
√

(n), exp(− d2

d+n ) also becomes low. And thus, combined if d = Ω(m log(m) +√
(n)), we get the desired result.

D Additional Simulation Plots for Moral Machine Data
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Figure 4: Margin of Victory vs Probability that FP-winner is also RP-winner

Pr[r(F ) = r(H)] was predicted with less than ideal number of samples for these plots to
ensure probabilistic guarantees as in Theorem 5.8. So they are slightly noisy. But the trend
indicates that the probability is near 1 in all cases.
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